Vevioz Enterprise Vevioz Enterprise
    #seo #socialmedia #digitalmarketer #seoservice #usaaccounts
    Napredno pretraživanje
  • Prijaviti se
  • Registar

  • Noćni način
  • © 2025 Vevioz Enterprise
    Oko • Imenik • Kontaktirajte nas • Programeri • Politika privatnosti • Uvjeti korištenja • Povrat novca

    Odaberi Jezik

  • Arabic
  • Bengali
  • Chinese
  • Croatian
  • Danish
  • Dutch
  • English
  • Filipino
  • French
  • German
  • Hebrew
  • Hindi
  • Indonesian
  • Italian
  • Japanese
  • Korean
  • Persian
  • Portuguese
  • Russian
  • Spanish
  • Swedish
  • Turkish
  • Urdu
  • Vietnamese

Gledati

Gledati Koluti Filmovi

Događaji

Pregledajte događaje Moji događaji

Blog

Pregledajte članke

Tržište

Najnoviji proizvodi

Stranice

Moje stranice Stranice koje mi se sviđaju

Više

Forum Istražiti popularne objave Igre Poslovi Ponude Sredstva
Koluti Gledati Događaji Tržište Blog Moje stranice Vidi sve
IIMSKILLS AnubhutiV
User Image
Povucite za promjenu položaja poklopca
IIMSKILLS AnubhutiV

IIMSKILLS AnubhutiV

@1cd216d0c
  • Vremenska Crta
  • grupe
  • sviđanja
  • Praćenje 20
  • Sljedbenici 6
  • Fotografije
  • Video zapisi
  • Koluti
  • Proizvodi
20 Praćenje
6 Sljedbenici
2 postovi
Muški
image
IIMSKILLS AnubhutiV
IIMSKILLS AnubhutiV
34 u ·Prevedi

Data Science Courses in Mumbai
A data science course typically covers a range of topics designed to equip students with the skills to analyze and interpret complex data. Key components often include:

1. **Statistics and Probability**: Foundations for understanding data distributions, hypothesis testing, and statistical inference.

2. **Programming**: Languages like Python and R are commonly taught for data manipulation and analysis.

3. **Data Visualization**: Techniques and tools (e.g., Matplotlib, Tableau) for presenting data insights effectively.

4. **Machine Learning**: Introduction to algorithms and models for predictive analytics, including supervised and unsupervised learning.

5. **Big Data Technologies**: Overview of tools like Hadoop and Spark for handling large datasets.

6. **Data Wrangling**: Techniques for cleaning and preparing data for analysis.

7. **Ethics in Data Science**: Considerations around data privacy, bias, and ethical implications of data use.

Courses may include hands-on projects and case studies to apply theoretical concepts to real-world scenarios. Overall, a data science course aims to develop analytical thinking and technical skills crucial for making data-driven decisions.

image
Kao
Komentar
Udio
Učitaj još postova

Ukini prijateljstvo

Jeste li sigurni da želite prekinuti prijateljstvo?

Prijavi ovog korisnika

Uredi ponudu

Dodajte razinu








Odaberite sliku
Izbrišite svoju razinu
Jeste li sigurni da želite izbrisati ovu razinu?

Recenzije

Kako biste prodali svoj sadržaj i postove, počnite s stvaranjem nekoliko paketa. Monetizacija

Plaćanje novčanikom

Upozorenje o plaćanju

Spremate se kupiti artikle, želite li nastaviti?

Zatražite povrat novca